Amperometric biosensor for oxalate determination in urine using sequential injection analysis.

نویسندگان

  • Jose A Rodriguez
  • Prisciliano Hernandez
  • Veronica Salazar
  • Yolanda Castrillejo
  • Enrique Barrado
چکیده

An amperometric flow biosensor for oxalate determination in urine samples after enzymatic reaction with oxalate oxidase immobilized on a modified magnetic solid is described. The solid was magnetically retained on the electrode surface of an electrode modified with Fe (III)-tris-(2-thiopyridone) borate placed into a sequential injection system preceding the amperometric detector. The variables involved in the system such as flow rate, aspired volumes (modified magnetic suspension and sample) and reaction coil length were evaluated using a Taguchi parameter design. Under optimal conditions, the calibration curve of oxalate was linear between 3.0-50.0 mg·L⁻¹, with a limit of detection of 1.0 mg·L⁻¹. The repeatability for a 30.0 mg·L⁻¹ oxalate solution was 0.7%. The method was validated by comparing the obtained results to those provided by the spectrophotometric method; no significant differences were observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-Injection Amperometric Determination of Ascorbic Acid Using a Graphite-Epoxy Composite Electrode Modified with Cobalt Phthalocyanine

A flow injection method is reported for the determination of ascorbic acid based on amperometric detection, using a cobalt(II) phthalocyanine (CoPc) modified graphite-epoxy electrode. The amperometric respons was evaluated with regard to pH, ionic strength of the electrolyte, flow rate of the carrier solution, injected sample volume and conditioning time of the electrode. The limit of detec...

متن کامل

Simultaneous Determination of Thiocyanate and Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO2-Fe Nanoparticles

A carbon ionic liquid electrode (CILE) modified with TiO2-Fe nanoparticles was constructed by incorporating TiO2-Fe nanoparticles into the paste matrix. Under the optimized experimental conditions, using differential pulse voltammetry (DPV), the oxidation of thiocyanate and oxalate were occurred at potentials of 0.740 V and 1.010 V, respectively, at the surface of the modi...

متن کامل

Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator.

The natural dye hematein in water solution was used as a pH-sensitive redox-active mediator for amperometric pH-sensing. The electrochemical characteristics were studied using cyclic voltammetry and chronoamperometry. Several types of urea biosensors were constructed with urease on the surface of platinum and graphite composite electrodes or in the bulk of the graphite composite. They were used...

متن کامل

Development of a platinized and ferrocene-mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system.

The preparation of a cholesterol amperometric biosensor using a platinized Pt electrode as a support for the electropolymerization of a polypyrrole film, in which cholesterol oxidase and ferrocene monocarboxylic acid (electron-transfer mediator) were co-entrapped, is described. All the biosensor preparation steps (platinization and electropolymerization) and the cholesterol determination take p...

متن کامل

Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents.

A flow injection amperometric biosensor for the determination of organophosphate nerve agents was developed. The biosensor incorporated an immobilized enzyme reactor that contains the enzyme organophosphorus hydrolase covalently immobilized on activated aminopropyl controlled pore glass beads and an electrochemical flow-through detector containing carbon paste working electrode, a silver/silver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2012